

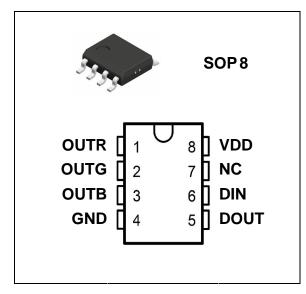
3-channel LED display driver

UCS1903N

GENERAL DESCRIPTION

The UCS1903N is a 3-channel LED display driver / controller with a built-in MCU digital interface, data latches and LED high voltage driving functions. It features superior performances and reliable functions. Under the control of the external MCU, it performs independent grayscale control through data-cascading transfer for driving large outdoor colour dot-matrix LED panels.

FEATURES


- 1. single line data tronsmission (return to zero code)
- 2. shaping transmit specific technology, Cascade number of lamps and lanterns is not restricted
- 3. cascading ability enhancement technology, Any 2 lanterns spacing can be up to 10 meters
- 4. Data transfer rate of 800 k/s, Images of not less than 1024 points can be realized when the refresh rate of 30 frames per second,
- 5. RGB output port PWM control can be achieved 256 grey level adjustment, port scanning frequency of 1.5 KHz/s
- 6. chip VDD built-in 5 v voltage regulator tube, output port Withstand Voltage is greater than 24 V
- adopt the preset 17 mA/channel constant current mode. High precision of constant current, differences of current between Channel is less than ±1.5%, the differences of current between Chip is less than ±3%
- 8. when power up ,IC self-inspection then Light connection on the pin B lamp
- 9. SA-I Anti-interference patent technology for single line data tronsmission
- 10. Industrial design, stable and reliable

Application:

Point light source full color module full color light bar LED decorate..

PIN CONFIGURATION

PIN DESCRIPTION

Number	Symbol	Name	Function Description
1	OUTR	LED drive output	Red PWM control output
2	OUTG	LED drive output	Green PWM control output
3	OUTB	LED drive output	Blue PWM control output
4	GND	Ground	Ground
5	DOUT	Data output	Display data cascaded output
6	DIN	Data input	Display data cascaded input
7	NC		
8	VDD		Logic power supply

品质·领先 创LED景观装饰IC领导品牌

ABSOLUTE MAXIMUM RATINGS (T _A =25 °C, V _{SS} =0 V, unless othe	wise specified)
--	-----------------

UCJ联芯科

Parameter	Symbol	Value	Unit
Logic supply voltage	V _{DD}	+7.0	V
Output port limitation voltage	V _{OUT}	28	V
Logic input voltage	V	-0.5 to V_{DD} + 0.5	V
Operating temperature	T _{OPT}	-40 to +85	°C
Storage temperature	T _{STG}	-55 to +150	°C
antistatic	ESD	6000	V
output rating	Pd	400	mW

RECOMMENDED OPERATNG RANGES ($T_A = -20$ to $+70 \degree$ C, $V_{SS} = 0 V$, unless otherwise specified)

Parameter	Symbol	Min.	Тур.	Max	Unit
Logic supply voltage	V _{DD}	-	5.5		V
High level input voltage	V _{IH}	0.7 V _{DD}	-	V _{DD}	V
Low level input voltage 💊	V _{IL}	0	Sin	0.3 V _{DD}	V
Output port rated voltage	Vout	24			V

ELECTRICAL CHARACTERISTICS ($T_A = -20$ to +70 °C, $V_{DD} = 4.5$ to 5.5 V, $V_{SS} = 0$ V, unless otherwise specified)

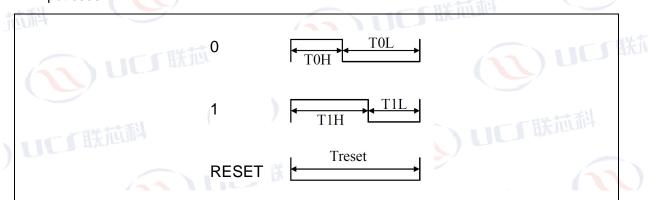
Parameter	Symbol	Min.	Тур.	Max	Unit	Test conditions
Low level output current	lout	16.5	17	17.5	mA	R, G, B
Low level output current	Ido	10	-	$\overline{()}$	mA	Vo = 0.4 V, Dout
High level input voltage	Vih	0.6Vdd	- L		V	
Low level input voltage	Vil	-	-	0.3 Vdd	V	
Voltage hysteresis	Vh	- 6	0.35	CT IN	V	
quiescent current	IDDdyn		\mathcal{T}	1	mA	无负载
rated power	PD		- Rtini	250	mW	(Ta=25℃)
thermal resistance	Rth(j-a)	U C	80	190	°C /W	and the
してよ既証料				$\widehat{\mathbf{n}}$) UC	THE DECKING

联芯科(深圳)微电子地址:深圳市福田区车公庙安华工业区6栋301电话: 0755-25866271传真: 0755-25866242www.szucs.cn

SWITCHING CHARACTERISTICS ($T_A = -20$ to +70 °C, $V_{DD} = 4.5$ to 5.5 V, $V_{SS} = 0$ V, unless otherwise specified)

Parameter	Symbol	Min.	Тур.	Max	Unit	Test conditions
Propagation delay time	t _{PLZ}	01121	-	300	ns	$C_L = 15 \mathrm{pF}, \mathrm{DIN} \rightarrow \mathrm{DOUT}, \ R_L = 10 \mathrm{k\Omega}$
Fall time	t _{THZ}		<u>)</u> U	120	μs	$C_L = 300 \text{pF},$ OUTR/OUTG/OUTB
Data transfer rate	F _{MAX}	800	-		kbps	50 % duty cycle
Input capacitance	C	151	一時间	15	pF	<u> </u>

FUNCTIONAL DESCRIPTION


UCJ联芯科

The UCS1903N sends signals in return to zero codes with a single-wire communication method. When the power-on reset is completed, the UCS1903N receives the data from the DIN pin. When all the 24 bits of data have been received, IC no longer receive data , the DOUT port starts to forward the data to the next chip as its input data. The DOUT pin is held LOW before the data forwarding,. The three PWM output ports, OUTR, OUTG and OUTB, drive Duty ratio output in a 0.6-ms period corresponding to the 24-bit data received before. If the input data from the DIN pin is a RESET code , the UCS1903N will drive the newest received 24-bit data for display. When the reset code is completed, the UCS1903N will start receive the new 24-bit data. When 24 bits of data have been received, the output at the OUTR, OUTG and OUTB pins will remain unchanged. When a low level RESET code longer than 24µs is received, the UCS1903N will drive Duty ratio output corresponding to the newest 24-bit data received.

The UCS1903N employs an automatic shaping-forwarding technique, so the number of the cascaded chips is not limited by the signal transfer, and is only limited by the panel refresh speed. For example, in a 1024-chip cascaded design with the panel refresh time of 1024X3X8 X 1.25 (us) =30ms), no flickering will appear.

TIMING WAVEFORMS

1 Input code

Name	Description	Typ. value	error
ТОН	0 code, up level time	0. 4µs	$\pm 40 \mathrm{ns}$
T1H	1 code, up level time	0.8µs	±80ns
TOL	0 code, Low level time	0.8µs	± 80 ns
T1L	1 code, low level time	0. 4µs	$\pm 40\mathrm{ns}$
Reset	Reset code, Low level time	>24us	

Name	Description	Typ. value	
ТОН	O code, up level time	0.4µs	(\mathbf{n})
Т1Н	1 code, up level time	0.8µs	S
TOL	0 code, Low level time	0.9µs	- 114 1
T1L	1 code, low level time	0.5µs) UCJ HAN
Reset	Reset code, Low level time	>24us	

Connection scheme 4

D1 D3 D2 D4 DIN DO DIN DO DIN DO ► Chip 3 Chip 1 Chip 2 してよ熊河村

Data tr	ansfer form	at					1		
		5		≥24µ: ∣	s I	\mathbf{C}			6
	k	Data refres cycle 1	h	\mapsto	₹	Data refre cycle 2		\rightarrow	
D1_	1st 24 bits	2nd 24 bits	3rd 24 bits	RESET CODE	1st 24 bits	2nd 24 bits	3rd 24 bits	RESET	
D2_		2nd 24 bits	3rd 24 bits	RESET CODE		2nd 24 bits	3rd 24 bits	RESET CODE	+ tri fi
D3_			3rd 24 bits	RESET CODE			3rd 24 bits	RESET	7Jeur
D4_									

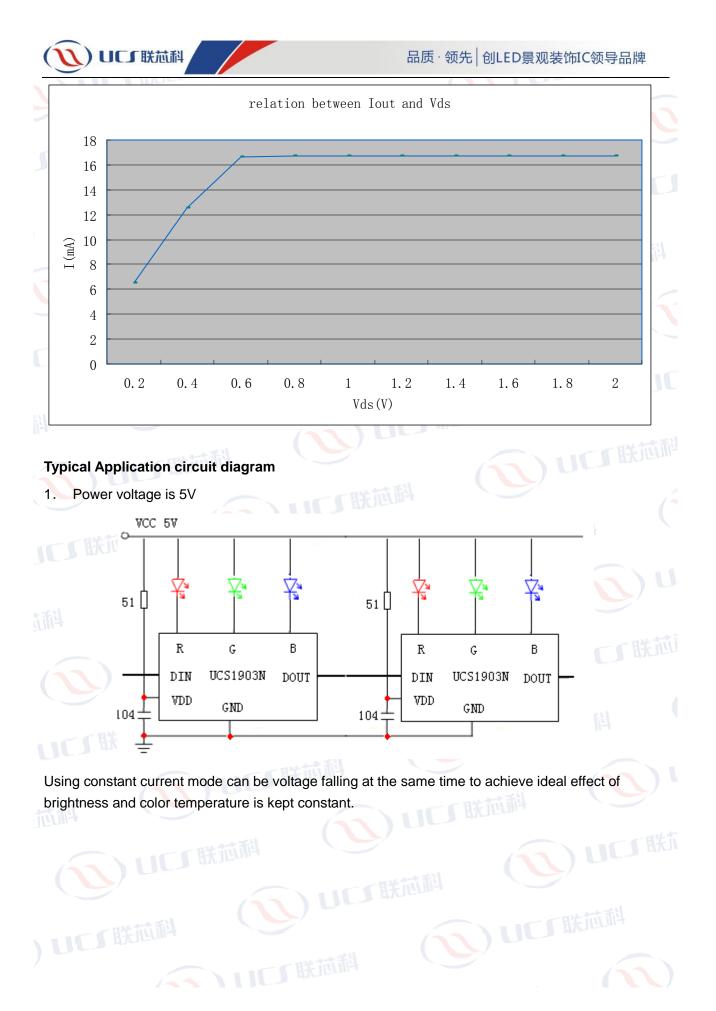
Note: D1 is the data sented from the MCU, D2, D3 and D4 are the data automatically shaped and forwarded by the cascaded circuit.

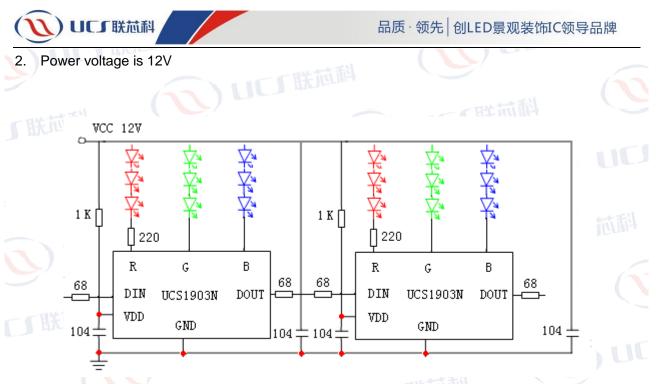
6. 24-bit data format

~	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	B3	B2	B1	В0
l			100	His I					1							1		-						

Note: The data is sent in the sequence of RGB, and the MSB is sent first.

constant current characteristic

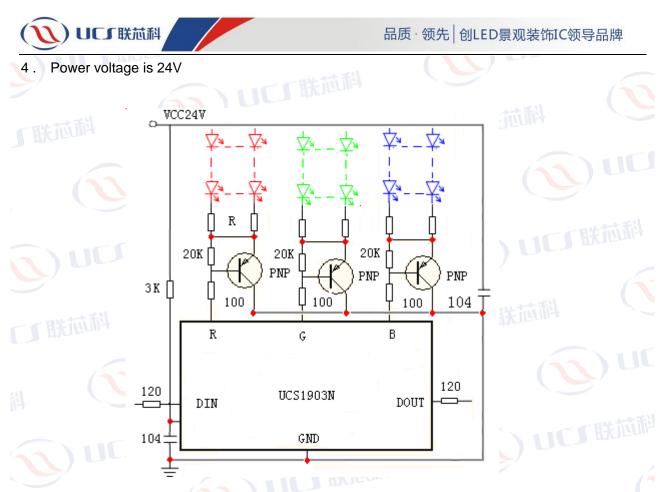

i i i i i


UCS1903N Constant current characteristic is excellent, between Channel, even between chip, the differences of current is tiny

(1): the differences of current between Channel is less than $\pm 1.5\%$. the differences of current between Chip is less than $\pm 3\%$

(2): When the voltage of the load change, UCS1903N output current is not affected, as shown in the figure below

(3): Below UCS1903N output port of the current lout and add on the port voltage Vds curve relationship。 the smaller the lout current, the smaller in the condition of constant current need of Vds.



In order to prevent the damage of charged pull plug, when 12 v power supply, Din and Do all the string in a 68-80 ohm resistor for protection

In order to reduce the interference, between each lamps and lanterns of power supply and ground multiple a capacitance of 104 or 105

3. Power voltage is 24V VCC24V Ó з к 🗍 З К 🗍 Πr R R G В R G В 120 120 120 120 DIN DOUT DIN UCS1903N DOUT UCS1903N VDD VDD GND GND 104 $104 \pm$ 104 =104

In order to prevent the damage of charged pull plug, when 24 v power supply, Din and Do all the string in a 120 ohm resistor for protection In order to reduce the interference, between each lamps and lanterns of power supply and ground multiple a capacitance of 104 or 105

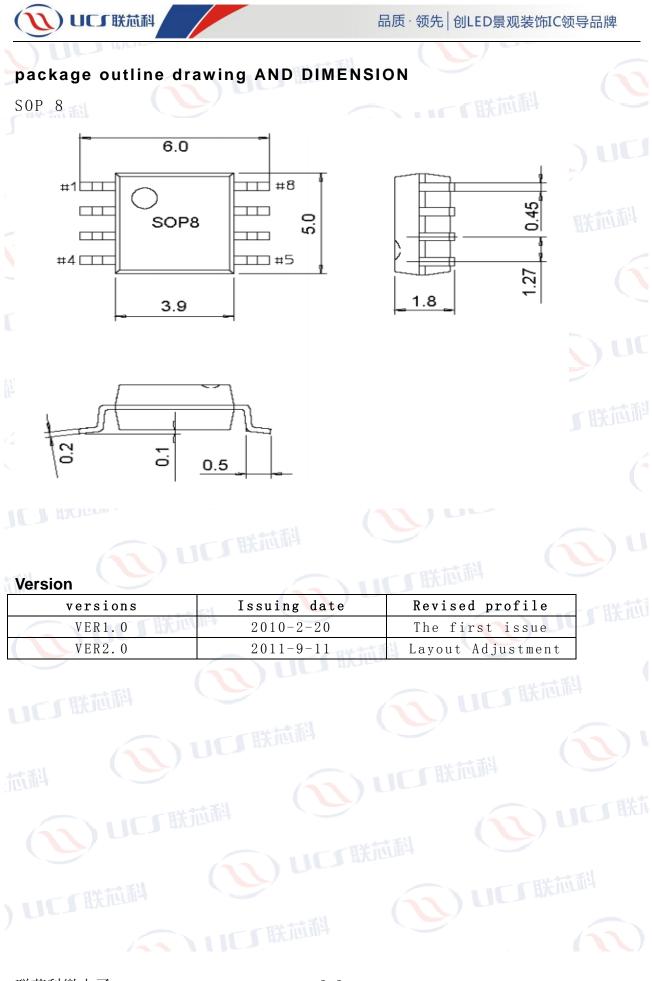
Attention : Shown above for the PNP transistor, 9012,8550 is work In order to prevent the damage of charged pull plug, when 24 v power supply, Din and Do all the string in a 120 ohm resistor for protection

In order to reduce the interference, between each lamps and lanterns of power supply and ground multiple a capacitance of 104 or 105

in.

Vds Definition and values

Vds is the output voltage on the RGB pin. In order to avoid more than PD, Vds is no more than 4.5 v .The following formula is Vds:


Vds=VCC-I*R-N*Vled

Attention: I is Each string on the LED current, R is the resistance of LED series, N is the LED series connection number, Vled is the LED voltage

stabilizing voltage characteristic

UCS1903N built-in stabilizer, according to the power supply voltage (VCC) is different, must choose different resistance (R) for step-down voltage, Resistance to select in the table below for reference:

VCC (V)	R(ohm)
5	51-80
12	750-1K
15	1.2K-1.5K
2 4	2.4K- 3K

